Abstract

Phagocytes display marked heterogeneity in their capacity to induce and control acute inflammation. This has a significant impact on the effectiveness of antimicrobial immune responses at different tissue sites as well as their predisposition for inflammation-associated pathology. Imaging flow cytometry provides novel opportunities for characterization of these phagocyte populations through high spatial resolution, statistical robustness, and a broad range of quantitative morphometric cell analysis tools. This study highlights an integrative approach that brings together new tools in imaging flow cytometry with conventional methodologies for characterization of phagocyte responses during acute inflammation. We focus on a comparative avian in vivo challenge model to showcase the added depth gained through these novel quantitative multiparametric approaches even in the absence of antibody-based cellular markers. Our characterization of acute inflammation in this model shows significant conservation of phagocytic capacity among avian phagocytes compared to other animal models. However, it also highlights evolutionary divergence with regards to phagocyte inflammation control mechanisms based on the internalization of apoptotic cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.