Abstract

A rapid, high-throughput, and quantitative method for cell entry route characterization is still lacking in nanomedicine research. Here, we report the application of imaging flow cytometry for quantitatively analyzing cell entry routes of actively targeted nanomedicines. We first engineered ICAM1 antibody-directed fusogenic nanoliposomes (ICAM1-FusoNLPs) and ICAM1 antibody-directed endocytic nanolipogels (ICAM1-EndoNLGs) featuring highly similar surface properties but different cell entry routes: receptor-mediated membrane fusion and receptor-mediated endocytosis, respectively. By using imaging flow cytometry, we characterized their intracellular delivery into human breast cancer MDA-MB-231 cells. We found that ICAM1-FusoNLPs mediated a 2.8-fold increased cell uptake of fluorescent payload, FITC-dextran, with a 2.4-fold increased intracellular distribution area in comparison with ICAM1-EndoNLGs. We also investigated the effects of incubation time and endocytic inhibitors on the cell entry routes of ICAM1-FusoNLP and ICAM1-EndoNLG. Our results indicate that receptor-mediated membrane fusion is a faster and more efficient cell entry route than receptor-mediated endocytosis, bringing with it a significant therapeutic benefit in a proof-of-principle nanomedicine-mediated siRNA transfection experiment. Our studies suggest that cell entry route may be an important design parameter to be considered in the development of next-generation nanomedicines. © 2019 International Society for Advancement of Cytometry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call