Abstract
In this paper, energies of the low-lying bound S-states (L = 0) of exotic three-body systems, consisting a nuclear core of charge +Ze (Z being atomic number of the core) and two negatively charged valence muons, have been calculated by hyperspherical harmonics expansion method (HHEM). The three-body Schrödinger equation is solved assuming purely Coulomb interaction among the binary pairs of the three-body systems X Z+μ-μ- for Z = 1 to 54. Convergence pattern of the energies have been checked with respect to the increasing number of partial waves Λmax. For available computer facilities, calculations are feasible up to Λmax = 28 partial waves, however, calculation for still higher partial waves have been achieved through an appropriate extrapolation scheme. The dependence of bound state energies has been checked against increasing nuclear charge Z and finally, the calculated energies have been compared with the ones of the literature.
Submitted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have