Abstract
A three-dimensional crack problem in electromagnetothermoelastic multiphase composites (EMTE-MCs) under extended loads is investigated in this paper. Using Green’s functions, the extended general displacement solutions are obtained by the boundary element method. This crack problem is reduced to solving a set of hypersingular integral equations coupled with boundary integral equations, in which the unknown functions are the extended displacement discontinuities. Then, the behavior of the extended displacement discontinuities around the crack front terminating at the interface is analyzed by the main-part analysis method of hypersingular integral equations. Analytical solutions for the extended singular stresses, the extended stress intensity factors (SIFs) and the extended energy release rate near the crack front in EMTE-MCs are provided. Also, a numerical method of the hypersingular integral equations for a rectangular crack subjected to extended loads is put forward with the extended displacement discontinuities approximated by the product of basic density functions and polynomials. In addition, distributions of extended SIFs varying with the shape of the crack are presented. The results show that the present method accurately yields smooth variations of extended SIFs along the crack front.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.