Abstract

Structural properties of the clean Si(001) surface obtained as a result of low-temperature (470–650 °C) pre-growth annealings of silicon wafers in a molecular-beam epitaxy chamber have been investigated. To decrease the cleaning temperature, a silicon surface was hydrogenated in the process of a preliminary chemical treatment in HF and NH4F aqueous solutions. It has been shown that smooth surfaces composed of wide terraces separated by monoatomic steps can be obtained by dehydrogenation at the temperatures ≳600 °C, whereas clean surfaces obtained at the temperatures <600 °C are rough. It has been found that there exists a dependence of structural properties of clean surfaces on the temperature of hydrogen thermal desorption and the process of the preliminary chemical treatment. The frequency of detachment/attachment of Si dimers from/to the steps and effect of the Ehrlich-Schwoebel barrier on ad-dimer migration across steps have been found to be the most probable factors determining a degree of the resultant surface roughness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call