Abstract

Abstract The present study was conducted to treat primary and secondary treated sewage for its reuse in irrigation, soil enrichment and aquaculture activities. The study involves treatment of this sewage through a subsurface horizontal gravity-fed gravel filter bed with an area of 35 m2. The effluent was then subjected to filtration by zeolite medium and disinfection by inline electrolytic production of chlorine. In order to provide pathogen-free water, an anodic oxidation (AO) disinfection system was implemented, treating a flow of up to 10 m3/d. The gravity-driven constructed wetland and solar-driven disinfection systems were evaluated for their treatment capacity for various physico-chemical and biological parameters. The wetland removed almost 84% of the nitrate (NO3−) and 77% of the phosphate (PO43−). Five-day biological oxygen demand was reduced from 48 mg/l to 10 mg/l from the secondary treated wastewater. The wetland was able to remove 65–70% of bacteria in the wastewater, whereas the AO disinfection system removed the bacterial content to below the detection limit. The implementation of the systems will provide a suitable option for the treatment of wastewater in a very economical and sustainable way.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call