Abstract

High-pressure homogenization (HPH) is a promising physical non-thermal approach to improve protein techno-functionality. This study aims to examine the effects of HPH on the lentil proteins through the perspective of the interfacial adsorption mechanism. The impact of HPH treatment on lentil protein isolate (LPI) at varying pressure levels (0 -150 MPa) was determined using several analytical techniques, including SDS-PAGE, FTIR, solubility, and techno-functional properties (foaming and emulsifying properties), alongside analyses of interfacial tension and interfacial shear rheology at the o/w and a/w interfaces for two pH values (2.0 and 4.5). Results reveal that HPH treatment up to 100 MPa effectively unfolds lentil proteins by disrupting disulfide-bonded subunits into lower molecular weight fractions and unfolding highly-ordered secondary structures into random coils. LPI's capacity to produce emulsions and foams was found to be enhanced concurrently with these physicochemical changes, particularly at pressures up to 50 MPa. The findings aligned with the interfacial tension and shear rheology analyses, which show that proteins can form interfacial viscoelastic films on both o/w and a/w interfaces. Furthermore, the interfacial behavior of LPI and the effect of HPH on the interfacial behavior were found to be pH-dependent. The lower interfacial tension and the higher interfacial viscoelastic moduli (G′ and G′′) were recorded at 50 MPa and 0 MPa at pH 2.0 and 4.5, respectively. These results stated that the effects of the HPH on the technofunctionality of LPI can be further enlightened by investigating the interfacial adsorption kinetics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call