Abstract

The Hamiltonian describing particle motion in an accelerator belongs to a large class of systems, the members of which can be integrated with a new set of high order symplectic integrators. One benefit of these integrators is their strong numerical stability, which results from the inclusion of only forward integration steps, independent of the order of accuracy. Using these integrators, the transfer map of any multipolar accelerator magnet is derived and presented here. From these maps, the Hamiltonian flow in different lattices is simulated and benchmarked against other well established integration schemes in the accelerator community. By comparing quantities such as the linear phase advance and action invariant, the chromaticity, as well as the working point and the tune spread with amplitude, the superiority of the novel symplectic integrators is demonstrated with respect to accuracy and integration cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.