Abstract
In this work, a functional magnetic nanohybrid consisting of manganese ferrite magnetic nanoparticles (MnFe2O4) deposited onto graphene oxide (GO) nanosheets was successfully synthesized using a modified co-precipitation method. The as-prepared GO-MnFe2O4 magnetic nanohybrids were characterized using x-ray diffraction, transmission electron microscopy, Fourier transformed infrared spectroscopy, and vibrating sample magnetometer measurements. Adsorption experiments were performed to evaluate the adsorption capacities and efficient removal of arsenic of the nanohybrid and compared with bare MnFe2O4 nanoparticles and GO nanosheets. Our obtained results reveal that the adsorption process of the nanohybrids was well fitted with a pseudo-second-order kinetic equation and a Freundlich isotherm model; the maximum adsorption capacity and removal efficiency of the nanohybrids obtained ~240.385 mg/g and 99.9% with a fast response of equilibrium adsorption time ~20 min. The larger adsorption capacity and shorter equilibrium time of the GO-MnFe2O4 nanohybrids showed better performance than that of bare MnFe2O4 nanoparticles and GO nanosheets. The advantages of reusability, magnetic separation, high removal efficiency, and quick kinetics make these nanohybrids very promising as low-cost adsorbents for fast and effective removal of arsenic from water.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have