Abstract

Social networking has become a hot topic, in which recommendation algorithms are the most important. Recently, the combination of deep learning and recommendation algorithms has attracted considerable attention. The integration of autoencoders and graph convolutional neural networks, while providing an effective solution to the shortcomings of traditional algorithms, fails to take into account user preferences and risks over-smoothing as the number of encoder layers increases. Therefore, we introduce L1 and L2 regularization techniques and fuse them linearly to address user preferences and over-smoothing. In addition, the presence of a large amount of noisy data in the graph data has an impact on feature extraction. To our best knowledge, most existing models do not account for noise and address the problem of noisy data in graph data. Thus, we introduce the idea of denoising autoencoders into graph autoencoders, which can effectively address the noise problem. We demonstrate the capability of the proposed model on four widely used datasets and experimentally demonstrate that our model is more competitive by improving up to 1.3, 1.4, and 1.2, respectively, on the edge prediction task.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call