Abstract
Different types of fractional derivatives have recently been noticed by researchers and used in modeling phenomena due to their characteristics. Furthermore, fractional optimal control problems have been the focus of many researchers because they reflect the real nature of different models. Hence, this article considers a class of nonlinear fractal-fractional optimal control problems in the Atangana–Riemann–Liouville sense with the Mittag-Leffler non-singular kernel. In this study, a numerical method based on the generalized Lucas wavelets and the Ritz method is presented to obtain approximate solutions. Then, the generalized Lucas wavelets and an extra pseudo-operational matrix of the Atangana–Riemann–Liouville derivative are introduced. We demonstrate the advantage of the proposed method through three numerical examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.