Abstract

Galvanomagnetic measurements were performed on the square shaped samples after Van der Pauw and on the Hall bar at low electric fields app. 1.5 V/cm and magnetic induction app. 6 kG in order to make a comparison between the theoretical and experimental results of the temperature dependence of mobility and resistivity from 70 K to 300 K. A calculation method was obtained of the drift mobility and the Hall mobility in which the scatterings are applied: on ionized impurities, on polar optical phonons, on acoustic phonons (deformation potential), on acoustic phonons (piezoelectric potential) and on dislocations. The elaborated method transformed to a computer program allows us to fit experimental values of the resistivity and the Hall mobility to those calculated. The fitting procedure makes it possible to characterize the quality of the n-type GaAs MBE layer, i.e. the net electron concentration, whole ionized impurities concentration and dislocation density after Read space charge cylinders model. The calculations together with the measurements allow us to obtain compensation ratio value in the layer, too. The influence of the epitaxial layer thickness on layers measurements accuracy in the case of Van der Pauw square probe was investigated. It was stated that in the layers under 3 micrometer the bulk properties are strongly influenced by both surfaces. The results of measurements of the same layer using the Van der Pauw and the Hall bar structure were compared. It was stated that the Hall bar structure only could be used to obtain proper measurements results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.