Abstract
Accurate load forecasting (LF) plays an important role in the operation and decision-making process of the power grid. Although the stochastic and nonlinear behavior of loads is highly dependent on consumer energy requirements, that demands a high level of accuracy in LF. In spite of several research studies being performed in this field, accurate load forecasting remains an important consideration. In this article, the design of a hybrid short-term load forecasting model (STLF) is proposed. This work combines the features of an artificial neural network (ANN), ensemble forecasting, and a deep learning network. RBFNNs and CNNs are trained in two phases using the functional link artificial neural network (FLANN) optimization method with a deep learning structure. The predictions made from RBFNNs have been computed and produced as the forecast of each activated cluster. This framework is known as fuzzy-RBFNN. This proposed framework is outlined to anticipate one-week ahead load demand on an hourly basis, and its accuracy is determined using two case studies, i.e., Hellenic and Cretan power systems. Its results are validated while comparing with four benchmark models like multiple linear regression (MLR), support vector machine (SVM), ML-SVM, and fuzzy-RBFNN in terms of accuracy. To demonstrate the performance of RBF-CNN, SVMs replace the RBF-CNN regressor, and this model is identified as an ML-SVM having 3 layers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.