Abstract

Over the past several years, Raytheon Company has adapted its Computer Aided Detection/Computer-Aided Classification (CAD/CAC)algorithm to process side-scan sonar imagery taken in both the Very Shallow Water (VSW) and Shallow Water (SW) operating environments. This paper describes the further adaptation of this CAD/CAC algorithm to process SW side-scan image data taken by the Battle Space Preparation Autonomous Underwater Vehicle (BPAUV), a vehicle made by Bluefin Robotics. The tuning of the CAD/CAC algorithm for the vehicle's sonar is described, the resulting classifier performance is presented, and the fusion of the classifier outputs with those of three other CAD/CAC processors is evaluated. The fusion algorithm accepts the classification confidence levels and associated contact locations from the four different CAD/CAC algorithms, clusters the contacts based on the distance between their locations, and then declares a valid target when a clustered contact passes a prescribed fusion criterion. Four different fusion criteria are evaluated: the first based on thresholding the sum of the confidence factors for the clustered contacts, the second and third based on simple and constrained binary combinations of the multiple CAD/CAC processor outputs, and the fourth based on the Fisher Discriminant. The resulting performance of the four fusion algorithms is compared, and the overall performance benefit of a significant reduction of false alarms at high correct classification probabilities is quantified. The optimal Fisher fusion algorithm yields a 90% probability of correct classification at a false alarm probability of 0.0062 false alarms per image per side, a 34:1 reduction in false alarms relative to the best performing single CAD/CAC algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call