Abstract
Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) coupled with liquid chromatography (LC) is a powerful combination useful in many research areas due to the utility of high mass resolving power and mass measurement accuracy for studying highly complex samples. Ideally, every analyte in a complex sample can be subjected to accurate mass MS/MS analysis to aid in identification. FT-ICR MS can provide high mass resolving power and mass accuracy at the cost of long data acquisition periods, reducing the number of spectra that can be acquired per unit time. Frequency multiple signal acquisition has long been realized as an attractive method to obtain high mass resolving power and mass accuracy with shorter data acquisition periods. However, one of the limitations associated with frequency multiple signal acquisition is reduced signal intensity as compared to a traditional dipole detector. In this study, we demonstrated the use of a novel ICR cell to improve frequency multiple signal intensity and investigated the potential use of frequency multiple acquisition for proteome measurements. This novel ICR cell containing both dipole and frequency multiple detection electrodes was installed on a 7T FT-ICR MS coupled to an LC system. Tryptic digests of HeLa cell lysates were analyzed using dipole and frequency multiple detectors by holding either the mass resolving power or signal acquisition time constant. Compared to dipole detection, second frequency multiple detection yielded 36% or 45% more unique identified peptides from HeLa cell lysates at twice the scan rate or twice the mass resolving power, respectively. These results indicate that frequency multiple signal acquisition with either the same resolving power or the same signal acquisition duration as used with dipole signals can produce a significant increase in the number of peptides identified in complex proteome samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.