Abstract

The symmetrical Fibonacci tane is constructed according to the symmetrical Fibonacci sine and cosine [Stakhov A, Rozin B. Chaos, Solitons & Fractals 2005;23:379]. As one of its applications, an algorithm is devised to obtain exact traveling wave solutions for the differential-difference equations by means of the property of function tane. For illustration, we apply the method to the (2 + 1)-dimensional Toda lattice, the discrete nonlinear Schrödinger equation and a generalized Toda lattice, and successfully construct some explicit and exact traveling wave solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.