Abstract
In this paper, a feature space trajectory (FST) classifier is applied to identify an unknown radar target. To improve the identification accuracy, we make use of information at multiple aspects of a radar target, and the FST classifier is combined with two different rules: majority vote and sum vote. In addition, two different algorithms via the simultaneous use of FST concept and line-to-line distance metric are presented to classify multi-aspect radar signals. Experimental results show that the proposed two algorithms significantly outperform the traditional FST classifier combined with majority vote and sum vote.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have