Abstract
The wind turbine gearbox is a critical equipment transforming the speed of the rotor hub to the generator, the condition of which is the reflection of operational efficiency and reliability of wind turbines. As the initial stage of the wind turbine gearbox, the fault feature extraction of the planetary gear set is challenging since it is prone to be affected by complicated structure, vibration from other high-speed stages and background noise. In this paper, a double Q factor wavelet-based sparse decomposition is applied to the fault feature extraction of the wind turbine planetary gearbox. Considering the sparsest wavelet coefficients, the vibration signal is iteratively decomposed into high Q and low Q components. The fault feature is generally hidden in the low Q component. With further demodulation, the fault information of planetary gears can be easily detected.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.