Abstract
The aquaculture industry needs to augment its global production and efficiency to meet the increasing consumer needs for fish and shellfish products. Unfortunately, infectious diseases have been a major impediment to the development and profitability of fish farms. While vaccines offer the most efficient way to control infectious pathogens, current products have only been successful against some diseases. These are mostly bacterial, and there are still several important diseases, mainly of viral and parasitic origin, for which no prophylactic treatment exists. DNA vaccines, compared to traditional antigen vaccines, have several practical and immunological advantages that make them very attractive for the aquaculture industry. The early success of DNA vaccines in animal models was very encouraging, but fish are unique in many aspects, and findings with other classes of vertebrate, namely mammals and birds, do not necessarily apply to aquatic animals. However, more recent studies with reporter genes showed that fish cells efficiently express foreign proteins encoded by eukaryotic expression vectors. A piscine-specific backbone vector might eventually improve immune responses to DNA vaccines, but there is already strong direct evidence for the induction of protective immunity with currently available plasmids. Immune responses to plasmid DNA injected intramuscularly (IM) into fish are characterized by the production of antibodies, which have been shown to be neutralizing in two different viral disease models. There is also indirect evidence suggesting the induction of cell-mediated immunity. Despite this evidence, immune responses to DNA vaccines have only been poorly characterized in fish because of the limited knowledge of the piscine immune system, and the small number of studies on the subject. Apart from optimizing the efficiency of DNA vaccines, other important issues, such as safety and production cost will be determinants for the potential application of this technology in commercial fish farms. Alternative methods of administration will also have to be developed for small fish and low-valued species, for which IM injection is not practical and/or cost effective.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.