Abstract
A new method was established for the determination of the extractables from pharmaceutical packaging materials using dispersive liquid–liquid microextraction based on solidification of floating organic drop (DLLME-SFO) coupled with ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-QTOF MS). Packaging samples were filled with three kinds of buffer solutions: acid buffer (pH = 3), alkaline buffer (pH = 9) and 0.9% NaCl solution to extract as many extractables as possible, and then the extractables in buffer solutions were enriched by DLLME-SFO technique. Parameters affecting the efficiency of the extraction procedure were evaluated and optimized, including the type and volume of dispersant, extractant volume, pH and vortex-mixing time. After optimization, the values obtained for limits of detection and quantification for three kinds of common antioxidants were 0.3 and 1.0 μg/L respectively, and good linearity (R2 > 0.99) was observed in their respective concentration ranges. The recoveries ranged from 80.61% to 117.87% at three spiked levels with the relative standard deviations (RSDs) between 0.92% and 9.29% (n = 6) in all three buffer solutions. The developed method was successfully applied to the analysis of extractables from pharmaceutical packaging materials. The results indicated that the proposed procedure is a novel, sensitive, fast and repeatable method and has a great significance for evaluation of safety of pharmaceutical packaging materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.