Abstract

The effects of four organic wastes, including cotton gin crushed compost (CC), poultry manure (PM), sewage sludge (SS) and organic municipal solid waste (MSW) on some biological properties of a Xerollic Calciorthid soil polluted with gasoline at two loading rates (5% and 10%) were studied in an incubation experiment. Three hundred grams of sieved soil (<2 mm) were polluted with gasoline and mixed with PM at a rate of 10%, CC at a rate of 17.2%, SS at a rate of 23.1%, or MSW at a rate of 13.1%, applying to the soil the same amount of organic matter with each organic amendment. An unamended soil, non polluted (C) and polluted with gasoline at 5% (G1) and 10% (G2) rate were used as reference. Soil samples were collected after 1, 30, 60, 90, 120, 180 and 270 d of incubation and analyzed for microbial biomass carbon, respiration and dehydrogenase, urease, β-glucosidase, phosphatase and arylsulfatase activities. At the end of the incubation period, soil biological properties were higher in organic amended soils than in C, G1 and G2 treatments. In particular, soil microbial biomass carbon and dehydrogenase, urease, β-glucosidase, phosphatase and arylsulfatase activities increased 87.1%, 92.9%, 88.7%, 93.2%, 78.2% and 85.3%, respectively for CC-amended soils respect to G2, 85.7%, 82.3%, 87.3%, 92.2%, 76.7% and 83.6%, respectively for PM-amended soils; 82%, 90%, 84.8%, 89.9%, 74.1% and 80%, respectively for SS-amended soils; and 71.3%, 78.3% 26.2%, 38.2%, 79.7% and 88.6%, respectively for MSW-amended soils. Since the adsorption capacity of gasoline was higher in CC than the PM, SS and MSW-amended soils, it can be concluded that the addition of organic wastes with higher humic acid concentration is more beneficial for remediation of soils polluted with gasoline.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.