Abstract

Supercapacitors are a kind of energy storage device that lie between traditional capacitors and batteries, characterized by high power density, long cycle life, and rapid charging and discharging capabilities. The energy storage mechanism of supercapacitors mainly includes electrical double-layer capacitance and pseudocapacitance. In addition to constructing multi-level pore structures to increase the specific surface area of electrode materials, defect engineering is essential for enhancing electrochemical active sites and achieving additional extrinsic pseudocapacitance. Therefore, developing a simple and efficient method for defect engineering is essential. Atomic layer deposition (ALD) technology enables precise control over thin film thickness at the atomic level through layer-by-layer deposition. This capability allows the intentional introduction of defects, such as vacancies, heteroatom doping, or misalignment, at specific sites within the material. The ALD process can regulate the defects in materials without altering the overall structure, thereby optimizing both the electrochemical and physical properties of the materials. Its self-limiting surface reaction mechanism also ensures that defects and doping sites are introduced uniformly across the material surface. This uniform defect distribution is particularly profitable for high surface area electrodes in supercapacitor applications, as it promotes consistent performance across the entire electrode. This review systematically summarizes the latest advancements in defect engineering via ALD technology in supercapacitors, including the enhancement of conductivity and the increase of active sites in supercapacitor electrode materials through ALD, thereby improving specific capacitance and energy density of the supercapacitor device. Furthermore, we discuss the underlying mechanisms, advantages, and future directions for ALD in this field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.