Abstract

In this study, a green deep eutectic solvent (DES) was synthesized at room temperature-based choline chloride (ChCl) and 4-methoxybenzyl alcohol (Anisyl alcohol (An-OH)) used as the conductive binder for modification of carbon paste electrode (CPE). In addition, single wall carbon nanotubes decorated by ZrO2 (SWCNT-ZrO2) nanocomposite was synthesized by the hydrothermal method and characterized by field emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDAX), and X-ray powder diffraction (XRD) analytical techniques. The DES and SWCNT-ZrO2 were used as a binder and modifier in the carbon paste electrode structure to form CPE/DES/SWCNT-ZrO2 as an electrochemical sensor for the simultaneous determination of paracetamol and rizatriptan as two anti-migration drugs for the first time. In the direction of optimal experimental conditions, the effective parameters such as pH, amount of modifier, and electrolyte type were optimized. Under these conditions, the limits of detection (LODs) 0.7 nM and 9.0 nM; linear dynamic ranges (LDRs) 0.003–100 and 0.08–100; and relative standard deviations (RSDs for n = 5) 1.63 and 1.52 were sequentially found for rizatriptan and paracetamol. The results indicate that the sensor can be applied for the detection of trace amounts of paracetamol and rizatriptan in clinical and pharmaceutical samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call