Abstract

Cs salt of 12-tungstophosphoric acid (HPW) was deposited simultaneously at the external surface of the SBA-15 silica microcrystals and inside its mesoporous channels at loading of 60 wt% and Cs/W ratio in the range between 0.9 and 2, followed by impregnation of 1 wt% Pt. The performance of the Pt/CsHPW/SBA-15 composite materials was tested in the NO x storage. The optimal NO x storage capacity and efficiency were achieved at Cs/W of 1.5. The dispersion of CsHPW on SBA-15 led to a significant decrease of its crystal size (5–13 nm) compared with bulk HPW and HPW supported on titania (28–29 nm). Pt/CsHPW/SBA-15 displayed lower NO x absorption capacity but much higher absorption and desorption efficiency than the reference Pt/HPW and Pt/HPW/TiO2 materials. Consequently, Pt/CsHPW/SBA-15 displayed a better performance in short lean (2 min)—rich (1 min) absorption-desorption cycles. The novel Pt/CsHPW/SBA-15 nanocomposites presents the basis for improved storage material for NO x removal from lean exhaust gases in highly dynamic aftertreatment technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.