Abstract

To construct, test and exploit the CRISPRi system for enhancement of shikimic acid production with Corynebacterium glutamicum. The CRISPRi system was used to regulate C. glutamicum gene expression at the transcriptional level. Hfq protein-mediated small regulatory RNAs system was compared with CRISPRi system. The more efficient CRISPRi system was used to adjust the metabolic flux involving the shikimic acid (SA) synthetic pathway. In 11 candidate genes, including transcription regulator, three targets were effective for increasing SA production. Through over-expression of ncgl1512 and down-regulating the expression of ncgl2008, ncgl2809, ncgl1856, the titers of SA increased 115% to 7.76g/l in 250ml flasks and 23.8g/l in 5l fermentor, which is the highest shikimic acid yield reported for C. glutamicum. CRISPRi system was constructed and is a high-performance and time-saving method to manipulate multiple genes in C. glutamicum for shikimic acid production. Moreover, CRISPRi-system was also effective in regulating the expression of a transcription regulator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.