Abstract

This paper formulates the active suspension control problem as disturbance attenuation problem with output and control constraints. The H∞ performance is used to measure ride comfort such that more general road disturbances can be considered, while time-domain hard constraints are captured using the concept of reachable sets and state-space ellipsoids. Hence, conflicting requirements are specified separately and handled in a nature way. In the framework of Linear Matrix Inequality (LMI) optimization, constrained H∞ active suspensions are designed on half-car models with and without considering actuator dynamics. Analysis and simulation results show a promising improvement on ride comfort, while keeping suspension strokes and control inputs within bounds and ensuring a firm contact of wheels to road.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.