Abstract
Intrusion detection system plays an important role in network security. However, network intrusion detection (NID) suffers from several problems, such as false positives, operational issues in high dimensional data, and the difficulty of detecting unknown threats. Most of the problems with intrusion detection are caused by improper implementation of the network intrusion detection system (NIDS). Over the past few years, computational intelligence (CI) has become an effective area in extending research capabilities. Thus, NIDS based upon CI is currently attracting considerable interest from the research community. The scope of this review will encompass the concept of NID and presents the core methods of CI, including support vector machine, hidden naïve Bayes, particle swarm optimization, genetic algorithm, and fuzzy logic. The findings of this review should provide useful insights into the application of different CI methods for NIDS over the literature, allowing to clearly define existing research challenges and progress, and to highlight promising new research directions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.