Abstract
Abstract To enable the inclusion of intermittent renewable energy sources on existing power grids requires base-load coal-fired power plants to operate flexibly, including fast load changes and continuous low-load operation. Low-load operation of a 620 MWe subcritical boiler is analyzed with the aid of a cosimulation methodology that incorporates a detailed 3D computational fluid dynamics (CFD) model together with a one-dimensional process model. A discretized one-dimensional model of the water/steam circuit was developed for the furnace, the radiant superheaters, and the convective/back pass heat exchangers. This is coupled with a detailed CFD model incorporating the furnace and radiant superheaters using an Eulerian–Eulerian reference frame. The coupled model is used to investigate the combustion stability, water/steam side effects, and the radiant heat-exchanger operational limits for six different burner firing arrangements at a low boiler load of 32% of maximum continuous rating. The results show that certain firing arrangements can lead to a high risk of fire-side corrosion and overheating of heat-exchanger components. Based on the analyses of combustion stability, boiler efficiency, and the safe operation of heat-exchanger components, a mixed firing arrangement with a higher secondary air mass flowrate for nonfiring burners was selected as the best operational strategy at this low load for the boiler under investigation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have