Abstract
The green microalga Haematococcus pluvialis has been widely studied due to its capacity to accumulate great amounts of astaxanthin, a high-value carotenoid with biological activities. In the present work, two green compressed fluid-based processes, pressurized liquid extraction (PLE) and supercritical antisolvent fractionation (SAF), are integrated to obtain an astaxanthin-enriched extract from this microalga. PLE was carried out using pressurized ethanol as solvent, for 20min, at 10MPa, and 50°C as extraction temperature. Subsequently, the obtained extract was processed by SAF to further purify the carotenoid fraction. The SAF process was optimized using a 3-level factorial experimental design and considering three experimental variables: (i) CO2 pressure (10-30MPa), (ii) percentage of water in the PLE extract (20-50%), and (iii) PLE extract/supercritical-CO2 flow rate ratio (0.0125-0.05). Total carotenoid content was evaluated in both extracts and raffinates. Best results were obtained at 30MPa, 0.05 feed/SC-CO2 mass flow rate, and 20% (v/v) of water in the feed solution, achieving values of 120.3mgg-1 carotenoids in extract (in the SAF extract fraction), which were significantly higher than those obtained in the original PLE extract. In parallel, a new fast two-dimensional comprehensive liquid chromatography (LC×LC) method was optimized to get the full carotenoid profile of these extracts in less than 25min. This is the first time that the use of a C30 column is reported in an on-line LC×LC system. Graphical abstract.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.