Abstract
Effective line loss management necessitates a model-driven evaluation method to assess its efficiency level thoroughly. This paper introduces a “model-driven + data-driven” approach based on collective intelligence theory to address the limitations of individual evaluation methods in conventional line loss assessments. Initially, eight different evaluation methods are used to form collective intelligence to evaluate the line loss management of power grid enterprises and generate a comprehensive dataset. Then, the data set is trained and evaluated using the random forest algorithm, with Spearman rank correlation coefficient as the test metric, to assess the power grid enterprise’s line loss management level. Combining model-driven and data-driven methods, this integrated approach efficiently leverages the informational value of indicator data while thoroughly considering the causal and associative attributes within the dataset. Based on data from 61 municipal grid enterprises, both the comparison of multiple AI methods and correlation tests of results verify the superiority of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.