Abstract
Expansive clays are found in many countries worldwide, and they exhibit inherent volume change during the seasonal moisture variation causing cracks, heaves, and damages to the overlying pavements. Chemical stabilisation is one of the most used approaches to treat the expansive clay subgrades. Cement, Lime and Fly ash are the most commonly used stabilisers, in which fly is cheaper and a by-product obtained from the coal power plant. This paper reviews fly ash stabilisation on various clay types, including low plasticity clays, high plasticity clays, silty clays, organic clays, and peats. The review begins with the properties of fly ash, followed by the characteristics of fly ash stabilised subgrades. The micro-level mechanism, physical, mechanical, and hydraulic characteristics of stabilised pavements are presented graphically for the Class C, and F fly ashes. The micro-level studies reveal that the pozzolanic reaction is stronger than the cation exchange during the fly ash stabilisation. The unconfined compressive strength (UCS), California bearing ratio (CBR) and resilient modulus (Mr) increased with the fly ash addition and curing time for most soft soils except peat clays. Based on the mechanical and hydraulic characteristics, using 15% class C fly ash with 7 days of curing is recommended for optimum performance. Although few research studies confirm that the leachate limit of stabilised soil is within the acceptable limit, further studies are required to investigate the uptake of heavy metals and other certain carcinogenic contaminants. This study will provide key information for researchers and Engineers on the selection of fly ash stabilisation measures for expansive subgrades.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.