Abstract

The release rate of drugs from an OROS® is controlled by semipermeable membranes composed typically of cellulose acetate (CA) with various flux enhancers. Cellulose acetate butyrate (CAB) was identified as a viable alternative. The CAB membrane matched the CA membrane in robustness but had superior drying properties, offering particular advantages for thermolabile formulations. Studies were conducted to characterize CAB membrane properties with respect to performance of OROS® systems. Four different membrane formulations with varying plasticizer type and concentration were investigated. The CAB based membranes exhibited superior drying characteristics and similar functionality to the CA:polyethylene glycol (PEG) membranes used as a control. A linear relationship was observed between the level of flux enhancer and release rate. The stability of the membrane was evaluated based on release profiles after system storage at various conditions. The CAB membranes appeared to have stability comparable to the standard CA membrane. A linear relationship between membrane weight and release rate as well as the time required to release 90% of a drug from the system [T90] for a model formulation was observed. In conclusion, the newly identified alternative membrane composition allows for the use of thinner membranes, thereby reducing cost of goods, coating time and, most importantly, membrane drying time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call