Abstract
Catalytic hydrodechlorination (HDC) is regarded as a promising purifying technology for drinking water treatment. So far, it has proved to be highly effective for the removal of different groups of chlorinated micropollutants including pharmaceuticals, neonicotinoid pesticides, personal care products or chloroacetic acids. The azole pesticides, recently included in the EU Watch Lists (Decisions 2020/1161 and 2022/1307), are a group of micropollutants of particular concern for drinking water given their high toxicity, persistence, and bioaccumulation potential. In this work, the feasibility of HDC for the removal of a representative group of chlorinated azole pesticides tebuconazole (TEB), tetraconazole (TET), prochloraz (PCZ), penconazole (PEN), metconazole (MET) and imazalil (IMZ)) is demonstrated, and their reactivity is compared with that observed for other halogenated micropollutant groups. Notably, all the pesticides investigated in this work (100 μg L−1) were completely dechlorinated within 30 min under ambient conditions using a 1 wt% Pd/Al2O3 catalyst concentration of 0.25 g L−1 and a H2 feeding of 50 mL N min−1. The experimental data were accurately described by a pseudo-first order kinetic equation and rate constant values in the range from 1.08 to 2.60 L gcat−1 min−1 were obtained. These values are quite close to those achieved for the most reactive neonicotinoid pesticides and significantly higher than the obtained for chloroacetic acids and most pharmaceuticals (e.g. diclofenac, sertraline or chlorpromazine). From the identification of the generated reaction intermediates and the final non-chlorinated products, sequential reaction pathways were proposed for each pollutant. Remarkably, despite the high toxicity exhibited by the azole pesticides tested, with LC50 values within the 0.4–7.0 mg L−1 range using A. salina, HDC effluents were non-toxic in all cases. Furthermore, the catalyst showed a remarkable stability upon three consecutive runs. Finally, the versatility of the process was demonstrated in the treatment of real aqueous matrices such as DWTP and tap water, where no significant differences were found either in terms of activity or stability.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have