Abstract

In this study, the biodiesel production of waste cooking oil using calcium methoxide as solid base catalyst was investigated. The calcium methoxide catalyst was synthesized from calcined quick lime reacted with methanol. The XRD result showed that the catalyst was successfully synthesized with sufficient purity. The strength of catalyst was examined on the transesterification reaction of waste cooking oil and methanol. Parameters affecting on transesterification such as the catalyst concentration, methanol-to-oil-molar ratio, reaction time and reaction temperature were investigated. The results showed that the percentage of fatty acid methyl ester conversion of 99.06%. The optimum conditions were achieved within 3 h using 3wt% catalyst concentration, 12:1 methanol-to-oil molar ratio and 65°C reaction temperature. In addition, the kinetic study of transesterification reaction was carried out at the temperature from 30°C to 65°C. The pseudo-first order was good agreement with the experiment results. The reaction rate constant (k) and activated energy (Ea) were determined as 0.023 min-1 and 55.77 kJ/mol, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call