Abstract
Cellular biomechanics is an area of study that is receiving more attention as time progresses. The response of cells to their mechanical environment, including biomechanical stimuli, has far-reaching ramifications for the area of tissue engineering, especially for tissues designed to withstand mechanical loading (e.g. bone, cartilage, tendons and ligaments, and arteries). The effects of mechanical stimuli on cells are only recently being examined, and the potential role of mechanical stimuli in tissue engineering is still one that is largely ignored in the design of tissue engineering scaffolds. The relationship of mechanical properties of scaffolds or of mechanical stimuli to cell behavior is complex, but vital to the development of the field. Also, understanding the complex interplay of form and environment on cells involves an increase in our knowledge of how cells react to their total environment including mechanical stimuli and material properties. In order to improve tissue engineering outcomes, a nexus must be developed between the mechanical, biochemical, and biological studies of cellular behavior, in the context of extremely complex systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.