Abstract
A systematically delineated dereplication approach was described based on genome mining and bioassay-guided fractionation using endophytic fungus Xylaria psidii FPL-52(S) isolated from leaves of Ficus pumila Linn., (Moraceae). A polyketide synthase gene-based molecular screening strategy by a degenerate oligonucleotide primer polymerase chain reaction technique coupled with a bioinformatic phylogenomic approach revealed the presence of an iterative polyketide synthase gene within the genome of Xylaria psidii FPL-52(S). Chemical dereplication of ethyl acetate extract derived from a submerged fermentation culture broth of Xylaria psidii FPL-52(S) by bioassay-guided chromatographic and hyphenated analytical spectroscopic techniques led to the identification of polyketide mycoalexin 3-O-methylmellein. Antimicrobial profiling and minimal inhibitory concentration values for 3-O-methylmellein were determined by disc diffusion and microbroth dilution techniques. Gram-positive bacteria, dermatophytic and phytopathogenic fungi were susceptible in terms of inhibition zone and minimum inhibitory concentration values when compared to co-assayed standards. Herein, we highlight and demonstrate an improved approach which facilitates efficient dereplication and effect-guided fractionation of antimicrobial metabolite(s). The present work flow serves as a promising dereplication tool to survey the biosynthetic potential of endophytic fungal diversity, thereby identifying the most promising strains and prioritizing them for novel polyketide-derived antimicrobial metabolite discovery.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have