Abstract

BackgroundIn the prevention and control of infectious diseases, previous research on the application of big data technology has mainly focused on the early warning and early monitoring of infectious diseases. Although the application of big data technology for COVID-19 warning and monitoring remain important tasks, prevention of the disease’s rapid spread and reduction of its impact on society are currently the most pressing challenges for the application of big data technology during the COVID-19 pandemic. After the outbreak of COVID-19 in Wuhan, the Chinese government and nongovernmental organizations actively used big data technology to prevent, contain, and control the spread of COVID-19.ObjectiveThe aim of this study is to discuss the application of big data technology to prevent, contain, and control COVID-19 in China; draw lessons; and make recommendations.MethodsWe discuss the data collection methods and key data information that existed in China before the outbreak of COVID-19 and how these data contributed to the prevention and control of COVID-19. Next, we discuss China’s new data collection methods and new information assembled after the outbreak of COVID-19. Based on the data and information collected in China, we analyzed the application of big data technology from the perspectives of data sources, data application logic, data application level, and application results. In addition, we analyzed the issues, challenges, and responses encountered by China in the application of big data technology from four perspectives: data access, data use, data sharing, and data protection. Suggestions for improvements are made for data collection, data circulation, data innovation, and data security to help understand China’s response to the epidemic and to provide lessons for other countries’ prevention and control of COVID-19.ResultsIn the process of the prevention and control of COVID-19 in China, big data technology has played an important role in personal tracking, surveillance and early warning, tracking of the virus’s sources, drug screening, medical treatment, resource allocation, and production recovery. The data used included location and travel data, medical and health data, news media data, government data, online consumption data, data collected by intelligent equipment, and epidemic prevention data. We identified a number of big data problems including low efficiency of data collection, difficulty in guaranteeing data quality, low efficiency of data use, lack of timely data sharing, and data privacy protection issues. To address these problems, we suggest unified data collection standards, innovative use of data, accelerated exchange and circulation of data, and a detailed and rigorous data protection system.ConclusionsChina has used big data technology to prevent and control COVID-19 in a timely manner. To prevent and control infectious diseases, countries must collect, clean, and integrate data from a wide range of sources; use big data technology to analyze a wide range of big data; create platforms for data analyses and sharing; and address privacy issues in the collection and use of big data.

Highlights

  • Big data are complex data sets that traditional data processing systems cannot efficiently and economically store, manage, or process

  • In the process of the prevention and control of COVID-19 in China, big data technology has played an important role in personal tracking, surveillance and early warning, tracking of the virus’s sources, drug screening, medical treatment, resource allocation, and production recovery

  • We identified a number of big data problems including low efficiency of data collection, difficulty in guaranteeing data quality, low efficiency of data use, lack of timely data sharing, and data privacy protection issues

Read more

Summary

Introduction

Big data are complex data sets that traditional data processing systems cannot efficiently and economically store, manage, or process. Big data technology supports a wide range of health care functions, including clinical decision support, population health management, and disease monitoring [2,3]. Through the analysis of patient characteristics and patient nursing costs, the most clinical cost-effective treatment methods can be determined; the application of big data analysis technology to patient files can identify individuals who may benefit from preventive care or lifestyle changes; the collection and analysis of medical procedure data can determine the most valuable patient nursing programs; and through analysis and drug treatment data, the health status of the population can be monitored and the health status of patients maximized through drug treatments [4]. After the outbreak of COVID-19 in Wuhan, the Chinese government and nongovernmental organizations actively used big data technology to prevent, contain, and control the spread of COVID-19

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call