Abstract
We show that sampling with a biased Metropolis scheme is essentially equivalent to using the heatbath algorithm. However, the biased Metropolis method can also be applied when an efficient heatbath algorithm does not exist. This is first illustrated with an example from high energy physics (lattice gauge theory simulations). We then illustrate the Rugged Metropolis method, which is based on a similar biased updating scheme, but aims at very different applications. The goal of such applications is to locate the most likely configurations in a rugged free energy landscape, which is most relevant for simulations of biomolecules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.