Abstract

ABSTRACTThe current research was performed to evaluate the effect of Bacillus megaterium MCR-8 on mitigation of nickel (Ni) stress in Vinca rosea grown on Ni-contaminated soil (50, 100, and 200 mg Ni kg−1 soil). The treated plants exhibited reduced growth, biomass, gas exchange capacity, and chlorophyll (Chl) content under Ni stress. The inoculated plants growing in Ni-contaminated media exhibited relatively higher growth, total soluble protein, and proline contents. Similarly, bacterial inoculation improved the activity of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX) under Ni stress. The Ni stress alleviation in inoculated plants was attributed to the reduced level of malondialdehyde (MDA) and hydrogen peroxide (H2O2), enhanced synthesis of protein, proline, phenols, and flavonides in conjunction with improved activity of antioxidant enzymes. The growth-promoting characteristics of microbe such as 1-aminocyclopropane-1-carboxylate deaminase (ACCD) and phosphate solubilization activity, siderophore, and auxin production capability also improved the growth and stress mitigation in inoculated plants. Furthermore, the inoculated plants exhibited higher value for bioconcentration factor (BCF), translocation factor (TF), and resulted in higher loss of Ni content from soil. The current results exhibited the beneficial role of B. megaterium MCR-8 regarding stress alleviation and Ni phytoextraction by V. rosea.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call