Abstract

Underwater welding robots play a crucial role in addressing challenges such as low efficiency, suboptimal performance, and high risks associated with underwater welding operations. These robots face a dual challenge encompassing both hardware deployment and software algorithms. Recent years have seen significant interest in humanoid robots and artificial intelligence (AI) technologies, which hold promise as breakthrough solutions for advancing underwater welding capabilities. Firstly, this review delves into the hardware platforms envisioned for future underwater humanoid welding robots (UHWR), encompassing both underwater apparatus and terrestrial support equipment. Secondly, it provides an extensive overview of AI applications in underwater welding scenarios, particularly focusing on their implementation in UHWR. This includes detailed discussions on multi-sensor calibration, vision-based three-dimensional (3D) reconstruction, extraction of weld features, decision-making for weld repairs, robot trajectory planning, and motion planning for dual-arm robots. Through comparative analysis within the text, it becomes evident that AI significantly enhances capabilities such as underwater multi-sensor calibration, vision-based 3D reconstruction, and weld feature extraction. Moreover, AI shows substantial potential in tasks like underwater image enhancement, decision-making processes, robot trajectory planning, and dual-arm robot motion planning. Looking ahead, the development trajectory for AI in UHWR emphasizes multifunctional models, edge computing in compact models, and advanced decision-making technologies in expansive models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.