Abstract
Our analysis explores the benefits of artificial intelligence (AI) in music generation, showcasing progress in electronic music, automatic music generation, evolution in music, contributions to music-related disciplines, specific studies, contributions to the renewal of western music, and hardware development and educational applications. The identified methods encompass neural networks, automation and simulation, neuroscience techniques, optimization algorithms, data analysis, and Bayesian models, computational algorithms, and music processing and audio analysis. These approaches signify the complexity and versatility of AI in music creation. The interdisciplinary impact is evident, extending into sound engineering, music therapy, and cognitive neuroscience. Robust frameworks for evaluation include Bayesian models, fractal metrics, and the statistical creator-evaluator. The global reach of this research underscores AI's transformative role in contemporary music, opening avenues for future interdisciplinary exploration and algorithmic enhancements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IAES International Journal of Artificial Intelligence (IJ-AI)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.