Abstract
Abstract An aqueous-based metal ion crosslinking approach for assembly of metal chalcogenide nanoparticles (NPs) into robust gels is reported. Short chalcogenide ligands (S2−) undergo crosslinking with metal salts (Sn4+) to form a gel [NP/S2−/Sn4+]n (NP=PbTe, PbS, CdS, CdSe). The corresponding aerogel networks retain the crystallinity and quantum confinement effects of the native building blocks while achieving excellent porosity [Brunauer–Emmett–Teller (BET) surface areas of 160–238 m2/g]. Treatment of sulfide-capped PbTe nanoparticles with an excess of Sn4+ leads to ion exchange and formation of an amorphous “SnTe” gel.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have