Abstract
Optimal use of scarce water resources is the prime objective for water resources development projects in the developing country like India. Optimal releases have been generally expressed as a function of reservoir state variables and hydrologic inputs by a relationship which ultimately allows the policy/water managers to determine the water to be released as a function of available information. Optimal releases were obtained by using optimal control theory with inflow series and revised reservoir characteristics such as elevation area capacity table, zero elevation level as input in this study. Operating rules for reservoir were developed as a function of demand, water level and inflow. Artificial Neural Network (ANN) with back propagation algorithm, Fuzzy Logic and decision tree algorithms such as M5 and REPTree were used for deriving the operating rules using the optimal releases for an irrigation and power supply reservoir, located in northern India. It was found that fuzzy logic model performed well compared to other soft computing techniques such as ANN, M5P and REPTree investigated in this study.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have