Abstract

In this paper, a new approach in predicting the flank wear of Titanium Aluminum Nitrite (TiAlN) coatings using Adaptive Network Based Fuzzy Inference System (ANFIS) is implemented. TiAlN coated cutting tool is widely used in machining due to its excellent resistance to wear. The TiAlN coatings were formed using Physical Vapor Deposition (PVD) magnetron sputtering process. The substrate sputtering power, bias voltage and temperature were selected as the input parameters and the flank wear as an output of the process. A statistical design of experiment called Response Surface Methodology (RSM) was used in collecting optimized data. The ANFIS model was trained using the limited experimental data. The triangular, trapezoidal, bell and Gaussian shapes of membership functions were used for inputs as well as output. The results of ANFIS model were validated with the testing data and compared with fuzzy rule-based and RSM flank wear models in terms of the root mean square error (RMSE), co-efficient determination (R2) and model accuracy (A). The result indicated that the ANFIS model using three bell shapes membership function obtained better result compared to the fuzzy and RSM flank wear models. The result also indicated that the ANFIS model could predict the output response in high prediction accuracy even using limited training data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.