Abstract

In order to solve the problem of sealing water and bearing capacity of a connected aisle in an underwater shield tunnel, a double‐circle horizontal freezing method was adopted for ground reinforcement in the connected aisle of Maliuzhou Tunnel, which is China’s first shield tunnel with superlarge diameter built in a composite stratum. This paper proposed a new double‐row‐pipe freezing model for the calculation of frozen wall thickness based on analytical solution to steady‐state temperature field. Besides, field measurement and transient numerical studies of the active freezing period were also carried out to study the freeze‐sealing effect. The results show that frozen wall thickness obtained by analytical solutions agrees well with numerical simulation results, which verifies the applicability of the newly proposed calculation method. Field analysis indicates that soil temperature gradually approaches a stable value which is far below the freezing point, and a reliable water‐sealing curtain can be formed around the designed connected aisle. Maximum impact of soil excavation on the frozen wall is about 10°C, and reducing exposure time of excavation surface can effectively alleviate the weakening of frozen wall. To obtain comprehensive analysis for freezing wall thickness, a more reasonable arrangement of temperature‐measuring holes is expected in future freezing engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.