Abstract

BackgroundAn interspinous process device, the Device for Intervertebral Assisted Motion (DIAM™) designed to treat lumbar neurogenic disease secondary to the lumbar spinal stenosis, it provides dynamic stabilization after minimally invasive (MI) lumbar decompression. The current study was conducted using an experimentally validated L1-L5 spinal finite element model (FEM) to evaluate the limited decompression on range of motion (ROM) and stress distribution on a neural arch implanted with the DIAM.MethodsThe study simulated bilateral laminotomies with partial discectomy at L3-L4, as well as unilateral and bilateral laminotomies with partial discectomy combined with implementation of the DIAM at L3-L4. The ROM and maximum von Mises stresses in flexion, extension, lateral bending, and axial torsion were analyzed in response to the hybrid protocol in comparison with the intact model.ResultsThe investigation revealed that decreased ROM, intradiscal stress, and facet joint force at the implant level, but considerably increased stress at the pars interarticularis were found during flexion and torsion at the L4, as well as during extension, lateral bending, and torsion at the L3, when the DIAM was implanted compared with the defect model.ConclusionThe results demonstrate that the DIAM may be beneficial in reducing the symptoms of stress-induced low back pain. Nevertheless, the results also suggest that a surgeon should be cognizant of the stress redistribution at the pars interarticularis results from MI decompression plus the application of the interspinous process device.

Highlights

  • An interspinous process device, the Device for Intervertebral Assisted Motion (DIAMTM) designed to treat lumbar neurogenic disease secondary to the lumbar spinal stenosis, it provides dynamic stabilization after minimally invasive (MI) lumbar decompression

  • Four models were designed in this study: (1) a model of the intact spine without any implants, (2) a defect model of the spine with bilateral laminotomies and partial discectomy at L3–4, (3) a model of the spine with unilateral laminotomy and partial discectomy with the DIAM implanted at L3–4 for dynamic fixation, (4) a model of the spine with bilateral laminotomies and partial discectomy with the DIAM

  • At the adjacent level (L2-L3), the disc stress of the DEF model was increased by 31%, and the results of the DIAMUNI and DIAMBIL models was decreased by 14 and 2% respectively, compared to that of the INT model

Read more

Summary

Introduction

The Device for Intervertebral Assisted Motion (DIAMTM) designed to treat lumbar neurogenic disease secondary to the lumbar spinal stenosis, it provides dynamic stabilization after minimally invasive (MI) lumbar decompression. The current study was conducted using an experimentally validated L1-L5 spinal finite element model (FEM) to evaluate the limited decompression on range of motion (ROM) and stress distribution on a neural arch implanted with the DIAM. Various minimally invasive (MI) laminotomies have been proposed in order to target the pathologic structures while minimizing segment instability and preserve the maximum spinal bony structure. It is currently a surgical technique commonly used for the treatment of LSS [6, 7].

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.