Abstract

The presence of strong noise and vibration interference in fault vibration signals poses challenges for extracting fault features from motor bearings. Therefore, appropriate pre-filtering procedures can effectively suppress the impact of the noise interference and further enhance fault-related signals. In this work, an improved Laplacian-of-Gaussian (ILoG) filter is proposed to enhance the fault-related signal. The proposed ILoG approach employs an enhanced Kurtosis-based indicator known as Correlated Kurtosis (CK). The CK capitalizes on the cyclostationarity of fault-related impulses and mitigates the random nature of impulse noise. Subsequently, an objective function, based on CK statistics, is suggested to iteratively update LoG coefficients by maximizing the CK value of the output signal. Therefore, the ILoG filter can better highlight the fault cyclic impulses associated with bearing faults. Furthermore, the ILoG filter is capable of attenuating impulsive noise, a feature that is absent in the original LoG filter. The simulation and experimental results demonstrate that the proposed ILoG method provides a remarkable capability to effectively enhance the fault-induced components, thereby improving the diagnostic accuracy. Consequently, the ILoG filter holds great potential for application in motor bearing fault diagnosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call