Abstract

Emulsified polycolloid substrate (EPS) was developed and applied in situ to form a biobarrier for the containment and enhanced bioremediation of a petroleum-hydrocarbon plume. EPS had a negative zeta potential (−35.7 mv), which promoted its even distribution after injection. Batch and column experiments were performed to evaluate the effectiveness of EPS on toluene containment and biodegradation. The EPS-to-water partition coefficient for toluene (target compound) was 943. Thus, toluene had a significant sorption affinity to EPS, which caused reduced toluene concentration in water phase in the EPS/water system. Groundwater containing toluene (18 mg/L) was pumped into the three-column system at a flow rate of 0.28 mL/min, while EPS was injected into the second column to form a biobarrier. A significant reduction of toluene concentration to 0.1 mg/L was observed immediately after EPS injection. This indicates that EPS could effectively contain toluene plume and prevent its further migration to farther downgradient zone. Approximately 99% of toluene was removed after 296 PVs of operation via sorption, natural attenuation, and EPS-enhanced biodegradation. Increase in total organic carbon and bacteria were also observed after EPS supplement. Supplement of EPS resulted in a growth of petroleum-hydrocarbon degrading bacteria, which enhanced the toluene biodegradation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.