Abstract
Autoinduction is a simple approach for heterologous protein expression that helps to achieve the high-level production of recombinant proteins in soluble form. In this work, we investigated if the application of an autoinduction strategy could help to optimize the production of bifunctional protein SRH-DR5-B, the DR5-specific TRAIL variant DR5-B fused to a VEGFR2-specific peptide SRHTKQRHTALH for dual antitumor and antiangiogenic activity. The protein was expressed in Escherichia coli SHuffle B T7, BL21(DE3), and BL21(DE3)pLysS strains. By IPTG induction, the highest expression level was in SHuffle B T7, while by autoinduction, the similar expression level was achieved in BL21(DE3)pLysS. However, in SHuffle B T7, only 45% of IPTG-induced SRH-DR5-B was expressed in soluble form, in contrast to 75% autoinduced in BL21(DE3)pLysS. The yield of purified SRH-DR5-B protein expressed by autoinduction in BL21(DE3)pLysS was 28 ± 4.5mg per 200ml of cell culture, which was 1.4times higher than the yield from IPTG-induced SHuffle B T7. Regardless of the production method, SRH-DR5-B was equally cytotoxic to BxPC-3 human tumor cells expressing DR5 and VEGFR2 receptors. Thus, the production of SRH-DR5-B by autoinduction in the E. coli BL21(DE3)pLysS strain is an efficient, technologically simple, and economical technique that allows to obtain a large amount of active protein from the cytoplasmic cell fraction. Our work demonstrates that the strategy of induction of protein expression is no less important than the strain selection.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have