Abstract
Abstract The Clouds and the Earth's Radiant Energy System (CERES) provides top-of-atmosphere (TOA) radiative flux estimates from shortwave (SW) and longwave (LW) radiance measurements by applying empirical angular distribution models (ADMs) for scene types defined by coincident high-resolution imager-based cloud retrievals. In this study, CERES ADMs are simulated using a feed-forward error back-propagation (FFEB) artificial neural network (ANN) simulation to provide a means of estimating TOA SW and LW radiative fluxes for different scene types in the absence of imager radiance measurements. In all cases, the ANN-derived TOA fluxes deviate from CERES TOA fluxes by less than 0.3 W m−2, on average, and show a smaller dependence on viewing geometry than TOA fluxes derived using ADMs from the Earth Radiation Budget Experiment (ERBE). The ANN-derived TOA SW and LW fluxes show a significant improvement in accuracy over the CERES ERBE-like fluxes when compared regionally.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.