Abstract

Abstract The Clouds and the Earth's Radiant Energy System (CERES) provides top-of-atmosphere (TOA) radiative flux estimates from shortwave (SW) and longwave (LW) radiance measurements by applying empirical angular distribution models (ADMs) for scene types defined by coincident high-resolution imager-based cloud retrievals. In this study, CERES ADMs are simulated using a feed-forward error back-propagation (FFEB) artificial neural network (ANN) simulation to provide a means of estimating TOA SW and LW radiative fluxes for different scene types in the absence of imager radiance measurements. In all cases, the ANN-derived TOA fluxes deviate from CERES TOA fluxes by less than 0.3 W m−2, on average, and show a smaller dependence on viewing geometry than TOA fluxes derived using ADMs from the Earth Radiation Budget Experiment (ERBE). The ANN-derived TOA SW and LW fluxes show a significant improvement in accuracy over the CERES ERBE-like fluxes when compared regionally.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call